题目内容
20.(1)求证:△AGE≌△DAC;
(2)过E做EF∥DC.交BC于F.连接AF.判断△AEF是怎样的三角形.并证明你的结论.
分析 (1)根据已知等边三角形的性质可推出△ADG是等边三角形,从而再利用SAS判定△AGE≌△DAC;
(2)连接AF,由已知可得四边形EFCD是平行四边形,从而得到EF=CD,∠DEF=∠DCF,由(1)知△AGE≌△DAC得到AE=CD,∠AED=∠ACD,从而可得到EF=AE,∠AEF=60°,所以△AEF为等边三角形.
解答 证明:(1)在△AGE与△DAC中,
∵DG‖BC,△ABC是等边三角形
∴AD=AG=DG
又∵DE=CG
∴EG=DE+DG=CG+AG=AC,
∠AGE=∠DAC=60°
在△AGE和△DAC中,
$\left\{\begin{array}{l}{AG=AD}\\{∠AGE=∠DAC}\\{GE=AC}\end{array}\right.$,
∴△AGE≌△DAC
(2)判断:△AEF是等边三角形
证明:∵EF∥DC![]()
∴∠GEF=∠GDC
又∵∠AEG=∠ACD
∴∠AEG+∠GEF=∠GCD+∠GDC=∠AGD=60°
∴∠AEF=60°
又∵DG∥BC,EF∥DC
∴四边形CDEF是平行四边形
∴DC=EF
又∵△AGE≌△DAC
∴AE=DC
∴AE=EF
∴△AEF是等边三角形.
点评 此题主要考查学生对全等三角形的判定,等边三角形的性质及判定的理解及运用.
练习册系列答案
相关题目
8.
如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=( )
| A. | 20° | B. | 60° | C. | 70° | D. | 80° |
15.若a<2$\sqrt{2}$<b,其中a、b为两个连续的整数,则ab的值为( )
| A. | 2 | B. | 5 | C. | 6 | D. | 12 |
5.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为( )
| A. | 4 | B. | $\sqrt{5}$ | C. | $\sqrt{13}$ | D. | 5 |
12.
如图,将三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB,则∠α的正弦值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
10.
如图是某几何体的三视图,其俯视图为正六边形,则该几何体的体积是( )
| A. | 24$\sqrt{3}$ | B. | 36$\sqrt{3}$ | C. | 72$\sqrt{3}$ | D. | 144$\sqrt{3}$ |