题目内容

20.如图,网格中的每个小正方形的边长为1,A,B是格点,则以A,B,C为等腰三角形顶点的所有格点C的位置有(  )
A.2个B.3个C.4个D.5个

分析 由勾股定理求出AB=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$,分三种情况讨论:①当A为顶角顶点时;②当B为顶角顶点时;③当C为顶角顶点时;即可得出结果.

解答 解:由勾股定理得:AB=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$,
分三种情况:如图所示:
①当A为顶角顶点时,符合△ABC为等腰三角形的C点有1个;
②当B为顶角顶点时,符合△ABC为等腰三角形的C点有2个;
③当C为顶角顶点时,符合△ABC为等腰三角形的C点有1个;
综上所述:以A,B,C为等腰三角形顶点的所有格点C的位置有1+2+1=4(个);
故选:C.

点评 本题考查了等腰三角形的判定、勾股定理、正方形的性质;熟练掌握等腰三角形的判定,分情况讨论是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网