题目内容
8.| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 连接OD,利用切线的性质和相似三角形△CBE∽△CDO的对应边成比例进行解答.
解答
解:如图,连接OD.
∵CD是⊙O的切线,
∴∠ODC=90°.
又∵BE作⊙O的切线,
∴∠CBE=90°且BE=ED,
∴∠CBE=∠CDO.
又∵∠BCE=∠DCO,
∴△CBE∽△CDO,
∴$\frac{CE}{CO}$=$\frac{BE}{DO}$,即$\frac{CD-BE}{BC+OB}$=$\frac{BE}{OB}$.
又∵CD=8,BE=3,
∴CE=CD-DE=CD-BE=5,
∴在直角△CBE中,利用勾股定理求得CB=4,
∴$\frac{5}{4+OB}$=$\frac{3}{OB}$,则OB=6,即该圆的半径为6.
故选:D.
点评 本题考查了切线的性质和勾股定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关题目
18.已知一组数据x1,x2,x3的平均数为6,则数据x1+1,x2+1,x3+1的平均数为( )
| A. | 6 | B. | 7 | C. | 9 | D. | 12 |
16.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意列方程为( )
| A. | 75×1+(120-75)x=270 | B. | 75×1+(120+75)x=270 | ||
| C. | 120(x-1)+75x=270 | D. | 120×1+(120+75)x=270 |
20.
如图,网格中的每个小正方形的边长为1,A,B是格点,则以A,B,C为等腰三角形顶点的所有格点C的位置有( )
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |