题目内容

8.如图,AB是⊙O的直径,点C是AB延长线上一点,CD是⊙O的切线,点D是切点,过点B作⊙O的切线,交CD于点E,若CD=8,BE=3,则⊙O的半径为(  )
A.3B.4C.5D.6

分析 连接OD,利用切线的性质和相似三角形△CBE∽△CDO的对应边成比例进行解答.

解答 解:如图,连接OD.
∵CD是⊙O的切线,
∴∠ODC=90°.
又∵BE作⊙O的切线,
∴∠CBE=90°且BE=ED,
∴∠CBE=∠CDO.
又∵∠BCE=∠DCO,
∴△CBE∽△CDO,
∴$\frac{CE}{CO}$=$\frac{BE}{DO}$,即$\frac{CD-BE}{BC+OB}$=$\frac{BE}{OB}$.
又∵CD=8,BE=3,
∴CE=CD-DE=CD-BE=5,
∴在直角△CBE中,利用勾股定理求得CB=4,
∴$\frac{5}{4+OB}$=$\frac{3}{OB}$,则OB=6,即该圆的半径为6.
故选:D.

点评 本题考查了切线的性质和勾股定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网