ÌâÄ¿ÄÚÈÝ
11£®£¨1£©Ð´³öµãA£¬B£¬CµÄ×ø±ê£¨-2£¬-1£©£¬£¨0£¬2£©£¬£¨3£¬-1£©£»
£¨2£©½«¡÷ABCÑØxÖá·½ÏòÏò×óÆ½ÒÆ3¸öµ¥Î»µÃµ½¡÷A1B1C1£¬ÔÚÈçͼÖл³ö¡÷A1B1C1£¬²¢Ö±½Óд³öµãA1µÄ×ø±ê£º£¨-5£¬-1£©£»
£¨3£©ÒÑÖª¡÷ABC¹ØÓÚxÖá¶Ô³ÆÍ¼ÐÎÊÇ¡÷A2B2C2£¬ÔÚÈçͼÖл³ö¡÷A2B2C£¬²¢Ö±½Óд³öµãB1£¬B2Ö®¼äµÄ¾àÀ룺5£®
·ÖÎö £¨1£©Ö±½Ó¸ù¾Ý¸÷µãÔÚ×ø±êϵÖеÄλÖü´¿ÉµÃ³ö½áÂÛ£»
£¨2£©¸ù¾ÝͼÐÎÆ½ÒƵÄÐÔÖÊ»³ö¡÷A1B1C1£¬²¢Ö±½Óд³öµãA1µÄ×ø±ê¼´¿É£»
£¨3£©×÷³ö¡÷ABC¹ØÓÚxÖá¶Ô³ÆÍ¼ÐÎÊÇ¡÷A2B2C2£¬ÀûÓù´¹É¶¨Àí¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð
½â£º£¨1£©ÓÉͼ¿ÉÖª£¬A£¨-2£¬-1£©£¬B£¨0£¬2£©£¬C£¨3£¬-1£©£®
¹Ê´ð°¸Îª£º£¨-2£¬-1£©£¬£¨0£¬2£©£¬£¨3£¬-1£©£»
£¨2£©Èçͼ¡÷A1B1C1¼´ÎªËùÇó£¬A1£¨-5£¬-1£©£®
¹Ê´ð°¸Îª£º£¨-5£¬-1£©£»
£¨3£©Èçͼ£¬¡÷A2B2C2¼´ÎªËùÇó£¬B1B2=$\sqrt{{3}^{2}+{4}^{2}}$=5£®
¹Ê´ð°¸Îª£º5£®
µãÆÀ ±¾Ì⿼²éµÄÊÇ×÷ͼ-Öá¶Ô³Æ±ä»»£¬ÊìÖªÖá¶Ô³ÆµÄÐÔÖÊÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®2-2µÈÓÚ£¨¡¡¡¡£©
| A£® | -$\frac{1}{4}$ | B£® | -4 | C£® | 4 | D£® | $\frac{1}{4}$ |
16£®ÈôµãA£¨a£¬-3£©ÔÚyÖáÉÏ£¬ÔòµãB£¨a-2£¬a+3£©ÔÚ£¨¡¡¡¡£©
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |