ÌâÄ¿ÄÚÈÝ
6£®°´ÒªÇóÍê³ÉÏÂÁи÷Ì⣮£¨1£©½â²»µÈʽ×鲢д³öÆäÕûÊý½â
$\left\{\begin{array}{l}{5x+2¡Ý3£¨x-1£©}\\{1-\frac{2x+5}{3}£¾x-2}\end{array}\right.$
£¨2£©½âÏÂÁв»µÈʽ×é
$\left\{\begin{array}{l}{\frac{1-2x}{3}-\frac{4-3x}{6}¡Ý\frac{x-2}{2}}\\{2x-7¡Ü3£¨x-1£©}\end{array}\right.$£®
·ÖÎö £¨1£©Çó³öÿ¸ö²»µÈʽµÄ½â¼¯£¬¸ù¾ÝÕÒ²»µÈʽ×é½â¼¯µÄ¹æÂÉÕÒ³ö¼´¿É£®
£¨2£©Çó³öÿ¸ö²»µÈʽµÄ½â¼¯£¬¸ù¾ÝÕÒ²»µÈʽ×é½â¼¯µÄ¹æÂÉÕÒ³ö¼´¿É£®
½â´ð ½â£º£¨1£©$\left\{\begin{array}{l}{5x+2¡Ý3£¨x-1£©¢Ù}\\{1-\frac{2x+5}{3}£¾x-2¢Ú}\end{array}\right.$
¡ß½â²»µÈʽ¢ÙµÃ£ºx$¡Ý-\frac{5}{2}$£¬
½â²»µÈʽ¢ÚµÃ£ºx£¼$\frac{4}{5}$£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª£º-$\frac{5}{2}$¡Üx£¼$\frac{4}{5}$£¬
¼´²»µÈʽ×éµÄÕûÊý½âΪ£º-2£¬-1£¬0£®
£¨2£©$\left\{\begin{array}{l}{\frac{1-2x}{3}-\frac{4-3x}{6}¡Ý\frac{x-2}{2}¢Ù}\\{2x-7¡Ü3£¨x-1£©¢Ú}\end{array}\right.$
½â²»µÈʽ¢ÙµÃ£ºx¡Ü1£¬
½â²»µÈʽ¢ÚµÃ£ºx¡Ý-4£¬
¡à²»µÈʽ×éµÄ½â¼¯Îª£º-4¡Üx¡Ü1£¬
µãÆÀ ±¾Ì⿼²éÁ˽âÒ»ÔªÒ»´Î²»µÈʽ£¨×飩£¬Ò»ÔªÒ»´Î²»µÈʽ×éµÄÕûÊý½âµÄÓ¦Ó㬹ؼüÊÇÄܸù¾Ý²»µÈʽµÄ½â¼¯ÕÒ³ö²»µÈʽ×éµÄ½â¼¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®ÒÑÖª$\left\{\begin{array}{l}{x=4}\\{y=1}\end{array}\right.$ºÍ$\left\{\begin{array}{l}{x=-2}\\{y=4}\end{array}\right.$¶¼ÊÇ·½³Ìy=kx+bµÄ½â£¬ÔòkºÍbµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | $\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=3}\end{array}\right.$ | B£® | $\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=-1}\end{array}\right.$ | C£® | $\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=-1}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=5}\end{array}\right.$ |