题目内容
20.如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);
②说出该画法依据的定理.
(2)小明在此基础上进行了更深入的探究,
①在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线c(已知这条线平分线经过点M).请你帮小明完成上面操作过程.(所有的线不能画到画板外,只能画在画板内)
②若直线a、b与画板的边直线l所成的钝角分别为130°、100°,试求①中所画的直线c与l所成的钝角.
分析 (1)方法一:利用平行线的性质;方法二:利用三角形内角和定理;
(2)首先作等腰三角形△PBD,然后延长BD交直线a于点A,则四边形ABPQ就是所求作的图形.作图依据是等腰三角形的性质与平行线的性质;
(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.
解答
解:(1)方法一:
①如图2,画PC∥a,量出直线b与PC的夹角度数,
即为直线a,b所成角的度数,
②依据:两直线平行,同位角相等,
方法二:
①如图2,在直线a,b上各取一点A,B,连接AB,测得∠1、∠2的度数,
则180°-∠1-∠2即为直线a,b所成角的度数;
②依据:三角形内角和为180°;![]()
(2)①如图3,画PC∥a,以P为圆心,任意长为半径画弧,分别交直线b、PC于点B、D,连接BD并延长交直线a于点A,则四边形ABPQ就是所求等腰三角形在画板内的部分;作线段AB的垂直平分线EF,则EF就是所求作的线;
②∵a∥c,直线a与直线l所成的钝角为130°,
∴直线c与直线l所成的锐角为50°,
∴直线c与l所成的钝角为130°.
点评 本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质;(2)等腰三角形的性质;(3)三角形内角和定理;(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.
练习册系列答案
相关题目
11.
如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,则点P2014的坐标是( )
| A. | (2014,2) | B. | (2014,-2) | C. | (2012,-2) | D. | (2012,2) |