题目内容

11.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,…,则点P2014的坐标是(  )
A.(2014,2)B.(2014,-2)C.(2012,-2)D.(2012,2)

分析 由P、A两点坐标可知,点P绕点A旋转180°得点P1,即为点P关于A的对称点,依此类推,点P2为P1关于B的对称点,由此发现一般规律.

解答 解:由已知可以得到,点P1,P2的坐标分别为(2,0),(2,-2).
记P2(a2,b2),其中a2=2,b2=-2.
根据对称关系,依次可以求得:P3(-4-a2,-2-b2),P4(2+a2,4+b2),P5(-a2,-2-b2),P6(4+a2,b2).
令P6(a6,b2),同样可以求得,点P10的坐标为(4+a6,b2),即P10(4×2+a2,b2),
所以点P2010的坐标是(2010,-2),
所以P2014(2012+2,-2),即P2014(2014,-2),
故选B.

点评 本题考查了旋转变换的规律.关键是根据等腰梯形,点的坐标的特殊性,寻找一般规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网