题目内容

13.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=$\frac{39}{2}$.

分析 首先作直径AE,连接CE,易证得△ABH∽△AEC,然后由相似三角形的对应边成比例,即可求得⊙O半径.

解答 解:作直径AE,连接CE,
∴∠ACE=90°,
∵AH⊥BC,
∴∠AHB=90°,
∴∠ACE=∠AHB,
∵∠B=∠E,
∴△ABH∽△AEC,
∴$\frac{AB}{AE}$=$\frac{AH}{AC}$,
∴AB=$\frac{AH•AE}{AC}$,
∵AC=24,AH=18,AE=2OC=26,
∴AB=$\frac{18×26}{24}$=$\frac{39}{2}$,
故答案为:$\frac{39}{2}$.

点评 此题考查了圆周角定理与相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网