题目内容
18.| A. | 15° | B. | 30° | C. | 45° | D. | 60° |
分析 首先根据直角的性质求出∠B=60°,利用旋转的性质求出△ABM是等边三角形,进而求出∠NMC=60°,再利用平行线的性质得到∠1+∠ANM=∠NMC,结合∠ANM=∠C=30°,即可求出∠1的度数.
解答 解:∵△BAC中,∠BAC=90°,∠C=30°,
∴∠B=90°-30°=60°,
∵△ABC绕着点A逆时针旋转,得到△AMN,
∴AB=AM,
∴△ABM是等边三角形,
∴∠AMB=60°,
∵∠AMN=60°,
∴∠CMN=180°-60°-60°=60°,
∵l∥BC,
∴∠1+∠ANM=∠NMC,
∵∠ANM=∠C=30°,
∴∠1+30°=60°,
∴∠1=30°.
故选B.
点评 本题主要考查了旋转的性质的知识,解答本题的关键是求出∠NMC=60°,利用平行线的性质即可解题,此题难度不大.
练习册系列答案
相关题目