题目内容

11.AB是⊙O的直径,且AB=2,OC⊥AB,垂足为点O,弧AD:弧DC=2:1,在OC上有一动点P,则PA+PD的最小值为$\sqrt{3}$.

分析 作点D关于OC的对称点D′,连接AD′交OC于点P,此时PA+PD最小,这个最小值=PA+PD=PA+PD′=AD′,连接PD,BD′,在RT△ABD′中求出AD′即可.

解答 解:如图,作点D关于OC的对称点D′,连接AD′交OC于点P,此时PA+PD最小,这个最小值=PA+PD=PA+PD′=AD′,连接PD,BD′.

∵$\widehat{AD}$=$\widehat{BD′}$,$\widehat{CD}$=$\widehat{CD′}$,$\widehat{AD}$:$\widehat{CD}$=2:1,
∴$\widehat{BD′}$:$\widehat{CD′}$=2:1,
∵∠BOC=90°,
∴∠BOD′=60°,∠BAD=30°,
∵AB是直径,
∴∠AD′B=90°,
∴BD′=$\frac{1}{2}$AB=1,AD′=$\sqrt{A{B}^{2}-BD{′}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$.
∴PA+PD的最小值为$\sqrt{3}$,
故答案为$\sqrt{3}$.

点评 本题考查轴对称最短问题、圆、两点之间线段最短、勾股定理等知识,解题的关键是利用轴对称找到点P的位置,再利用勾股定理解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网