题目内容

19.如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,…如此进行下去,得到一条“波浪线”.若点P(41,m)在此“波浪线”上,则m的值为(  )
A.2B.-2C.0D.$\frac{9}{4}$

分析 先解方程-x(x-3)=0得A1(3,0),OA1=3,利用旋转的性质得到A1A2=OA1=3,则OA2=6,A2(6,0),所以C2的解析式为y=(x-3)(x-6)(3≤x≤6),利用此规律可判断角标为奇数的抛物线开口向下,角标为偶数的抛物线开口向上,由于OA13=39,OA14=42,则A13(39,0),A14(42,0),于是可利用交点式写出C14的解析式为y=(x-39)(x-42)(39≤x≤42),然后把点P(41,m)代入可计算出m的值.

解答 解:当y=0时,-x(x-3)=0,解得x1=0,x2=3,则A1(3,0),OA1=3,
∵C1绕A1旋转180°得到C2
∴A1A2=OA1=3,则OA2=6,A2(6,0),
∴C2的解析式为y=(x-3)(x-6)(3≤x≤6),
同样可得OA13=39,OA14=42,则A13(39,0),A14(42,0),
∴C14的解析式为y=(x-39)(x-42)(39≤x≤42),
∴点P(41,m)在抛物线C14上,
当x=41时,m=2×(-1)=-2.
故选B.

点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.解决本题的关键是能利用交点式写出每段抛物线的解析式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网