题目内容
12.解下列方程组:(1)$\left\{\begin{array}{l}{y=2x-3}\\{3x+2y=8}\end{array}\right.$(用代入消元法)
(2)$\left\{\begin{array}{l}{3x-y=5}\\{5x+2y=23}\end{array}\right.$(用加减消元法)
分析 (1)此方程采用代入消元法最简单,可以直接把①代入②,即可消去未知数y,解方程即可求得;
(2)将方程①×2+②消去未知数y,解方程即可求得.
解答 解:(1)在$\left\{\begin{array}{l}{y=2x-3}&{①}\\{3x+2y=8}&{②}\end{array}\right.$中,
将①代入②得:3x+2(2x-3)=8,
解得:x=2,
将x=2代入①得:y=2×2-3=1,
故方程组的解为:$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3x-y=5}&{①}\\{5x+2y=23}&{②}\end{array}\right.$,
①×2+②,得:11x=33,
解得:x=3,
将x=3代入①,得:9-y=5,
解得:y=4,
故方程组的解为:$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$.
点评 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.
练习册系列答案
相关题目
20.直线y=2x+1与直线y=-3x+6交于点(a,b),则$\left\{\begin{array}{l}{x=a}\\{y=b}\end{array}\right.$是方程组( )的解.
| A. | $\left\{\begin{array}{l}{y=2x+1}\\{y=-3x}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{y=2x+1}\\{y=-3x+6}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{y=2x+1}\\{y=3x+6}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{y=2x-1}\\{y=-3x+6}\end{array}\right.$ |