题目内容
3.已知四边形的四条边长分别是a,b,c,d,其中a,b为对边,并且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是( )| A. | 任意四边形 | B. | 平行四边形 | ||
| C. | 对角线相等的四边形 | D. | 对角线垂直的四边形 |
分析 把a2+b2+c2+d2=2ab+2cd变形得到a2-2ab+b2+c2-2cd+d2=0,则根据完全平方公式得到(a-b)2+(c-d)2=0,根据非负数的性质得a=b且c=d,然后根据平行四边形的判定方法求解.
解答 解:∵a2+b2+c2+d2=2ab+2cd,
∴a2-2ab+b2+c2-2cd+d2=0,
∴(a-b)2+(c-d)2=0,
∴a=b且c=d,
∵a,b为对边,
∵两组对边分别相等的四边形是平行四边形,
∴此四边形为平行四边形.
故选:B.
点评 本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了非负数的性质和平行四边形的判定.
练习册系列答案
相关题目