题目内容
5.(1)如图1,求证:∠ADB=45°;
(2)如图2,点F在BD弦上,∠AFB=135°,连接CD,求证:BF=CD;
(3)在(2)的条件下,连接AO,当AE=CE时,求tan∠FAO的值.
分析 (1)首先根据直径的性质,证明∠C=45°,根据∠ADB=∠C即可解决问题.
(2)如图2中,连接AB、AO.欲证明BF=CD,只要证明△ABF≌△ACD即可.
(3)如图2中,首先证明∠FAO=∠ABE,根据tan∠FAO=tan∠ABE=$\frac{AE}{AB}$,结合条件即可解决问题.
解答 (1)证明:如图1中,连接AB,![]()
∵BC是直径,
∴∠BAC=90,
∵$\widehat{AB}$=$\widehat{AC}$,
∴AB=AC,
∴∠ABC=∠C=45°,
∴∠ADB=∠C=45°.
(2)如图2中,连接AB、AO.![]()
∵∠AFB=135°,
∴∠AFD=180°-∠AFB=45°,
∵∠ADB=45°,
∴∠AFD=∠ADF=45°,
∴AF=AD,
∴∠FAD=∠BAC=90°,
∴∠BAF=∠CAD,
在△ABF和△ACD中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAF=∠CAD}\\{AF=AD}\end{array}\right.$,
∴△ABF≌△ACD,
∴BF=CD.
(3)在图中,∵∠BAF=∠CAD=∠CBD,
∵∠FAO+∠BAF=∠CBD+∠ABF=45°,
∴∠ABE=∠FAO,
∵AB=AC,AE=EC,
∴AB=2AE,
∴tan∠FAO=tan∠ABE=$\frac{AE}{AB}$=$\frac{1}{2}$.
点评 本题考查圆综合题、全等三角形判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
练习册系列答案
相关题目
18.
如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段都与AC平行或BD平行,已知AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度是( )
| A. | 100m | B. | 200m | C. | 100$\sqrt{3}$m | D. | 不能确定 |
14.已知a使得关于x的方程$\frac{x-1}{x-2}$-$\frac{a}{2-x}$=a的解为正数,且满足关于x的不等式组$\left\{\begin{array}{l}{x-a≥0}\\{-3+2x≤1}\end{array}\right.$有解,这样的a的取值范围是( )
| A. | 1<a≤2 | B. | a<$\frac{1}{3}$且a≠-1 | ||
| C. | 1<a≤2或a<$\frac{1}{3}$且a≠-1 | D. | a<2且a≠-1 |