题目内容

1.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=(  )
A.30°B.35°C.40°D.50°

分析 首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.

解答 解:由题意得:
AC=AC′,
∴∠ACC′=∠AC′C;
∵CC′∥AB,且∠BAC=75°,
∴∠ACC′=∠AC′C=∠BAC=75°,
∴∠CAC′=180°-2×75°=30°;
由题意知:∠BAB′=∠CAC′=30°,
故选A

点评 该命题以三角形为载体,以旋转变换为方法,综合考查了全等三角形的性质及其应用问题;对综合的分析问题解决问题的能力提出了较高的要求.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网