题目内容

20.对于题目:“化简并求值:$\frac{1}{a}$+$\sqrt{\frac{1}{{a}^{2}}{+a}^{2}-2}$,其中a=2.”甲、乙两人的解答不同,
甲的解答是:$\frac{1}{a}$+$\sqrt{\frac{1}{{a}^{2}}{+a}^{2}-2}$=$\frac{1}{a}$+$\sqrt{{(\frac{1}{a}-a)}^{2}}$=$\frac{1}{a}$+$\frac{1}{a}$-a=$\frac{2}{a}$-a=$\frac{2}{2}$-2=-1;
乙的解答是:$\frac{1}{a}$+$\sqrt{\frac{1}{{a}^{2}}{+a}^{2}-2}$=$\frac{1}{a}$+$\sqrt{{(a-\frac{1}{a})}^{2}}$=$\frac{1}{a}$+a-$\frac{1}{a}$=a=2.
谁的解答是错误的?请说明理由.

分析 根据二次根式的性质判断化简的正确性即可.

解答 解:因为a=2时,$\frac{1}{a}$-a=$\frac{1}{2}$-2=-1$\frac{1}{2}$<0,
所以错误的是甲.

点评 此题考查二次根式的性质,关键是应熟练掌握二次根式的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网