题目内容
8.(1)直接写出点E的坐标(-2,0);
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t=2秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.
分析 (1)根据平移的性质即可得到结论;
(2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;
②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);
③如图,过P作PE∥BC交AB于E,则PE∥AD,根据平行线的性质即可得到结论.
解答 解:(1)根据题意,可得
三角形OAB沿x轴负方向平移3个单位得到三角形DEC,
∵点A的坐标是(1,0),
∴点E的坐标是(-2,0);
故答案为:(-2,0);
(2)①∵点C的坐标为(-3,2).
∴BC=3,CD=2,
∵点P的横坐标与纵坐标互为相反数;
∴点P在线段BC上,
∴PB=CD,
即t=2;![]()
∴当t=2秒时,点P的横坐标与纵坐标互为相反数;
故答案为:2;
②当点P在线段BC上时,点P的坐标(-t,2),
当点P在线段CD上时,点P的坐标(-3,5-t);
③能确定,
如图,过P作PE∥BC交AB于E,
则PE∥AD,
∴∠1=∠CBP=x°,∠2=∠DAP=y°,
∴∠BPA=∠1+∠2=x°+y°=z°,
∴z=x+y.
点评 本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键.
练习册系列答案
相关题目
10.(-5)2013+(-5)2012能被下列数整除的是( )
| A. | 4 | B. | 6 | C. | 9 | D. | 15 |
13.在?ABCD中,AB=3,AD=5,则?ABCD的周长为( )
| A. | 8 | B. | 10 | C. | 12 | D. | 16 |