题目内容

20.如图,已知当四边形ABCD和四边形A1B1C1D1满足条件:AB=A1B1,BC=B1C1,CD=C1D1,∠B=∠B1,∠C=∠C1时,四边形ABCD与四边形A1B1C1D1全等.请你类比上述条件,写出四边形ABCD与四边形A2B2C2D2相似需要满足的条件:AB=nA1B1,BC=nB1C1,CD=nC1D1,∠B=∠B1,∠C=∠C1

分析 根据相似多边形的判定定理和性质定理解答.

解答 解:四边形ABCD与四边形A2B2C2D2相似需要满足的条件是AB=nA1B1,BC=nB1C1,CD=nC1D1,∠B=∠B1,∠C=∠C1
故答案为:AB=nA1B1,BC=nB1C1,CD=nC1D1,∠B=∠B1,∠C=∠C1

点评 本题考查的是相似多边形的判定和性质,掌握相似多边形的判定定理和性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网