题目内容
10.分析 由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2016次这样的变换得到正方形ABCD的对角线交点M的坐标.
解答 解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).
∴对角线交点M的坐标为(2,2),
根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),
第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),
第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),
第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),
∴连续经过2016次变换后,正方形ABCD的对角线交点M的坐标变为(-2014,-2).
故答案为:(-2014,2).
点评 此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.
练习册系列答案
相关题目
2.用加减消元法解二元一次方程组$\left\{\begin{array}{l}{2x-3y=7①}\\{5x-3y=-2②}\end{array}\right.$,由①-②可得的方程为( )
| A. | 3x=5 | B. | -3x=9 | C. | -3x-6y=9 | D. | 3x-6y=5 |