题目内容
4.(1)求证:∠B=∠ACD;
(2)已知点E在AB上,且BC2=AB•BE;
①证明:CD与以A为圆心、AE为半径的⊙A相切;
②若tan∠ACD=$\frac{3}{4}$,BC=10,求CE的长,设①中的⊙A与DB交于点M,直接写出DM=$\frac{81}{7}$.
分析 (1)根据∠ACB=∠DCO=90°,得到∠ACD=∠OCB,根据直角三角形的性质得到OC=OB,得到∠OCB=∠B,利用等量代换证明结论;
(2)①因为BC2=AB•BE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,过点A作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切;
②根据正切的概念分别求出CE、BE、AC、AE,根据正弦的定义解答即可.
解答 (1)证明:∵∠ACB=∠DCO=90°,
∴∠ACB-∠ACO=∠DCO-∠ACO,
即∠ACD=∠OCB,
∵点O是AB的中点,
∴OC=OB,
∴∠OCB=∠B,
∴∠ACD=∠B;
(2)①作AF⊥CD于点F,![]()
∵BC2=AB•BE,
∴$\frac{BC}{AB}$=$\frac{BE}{BC}$,
∵∠B=∠B,
∴△ABC∽△CBE,
∴∠ACB=∠CEB=90°,
∵∠CEB=90°,
∴∠B+∠ECB=90°,
∵∠ACE+∠ECB=90°,
∴∠B=∠ACE,
∵∠ACD=∠B,
∴∠ACD=∠ACE,
∴CA平分∠DCE,
∵AF⊥CE,AE⊥CE,
∴AF=AE,
∴直线CD与⊙A相切;
②∵∠B=∠ACD,tan∠ACD=$\frac{3}{4}$,
∴tan∠B=$\frac{3}{4}$,
∵BC=10,
∴CE=6,BE=8,AC=$\frac{15}{2}$,AB=$\frac{25}{2}$,
∴AE=$\frac{9}{2}$,OE=$\frac{7}{4}$,
∵O为AB的中点,
∴CO=$\frac{1}{2}$AB=$\frac{25}{4}$,
∴sin∠OCE=$\frac{OE}{OC}$=$\frac{7}{25}$,
∵∠D=∠OCE,
∴sin∠D=$\frac{7}{25}$,又AF=AE=$\frac{9}{2}$,
∴$\frac{\frac{9}{2}}{AD}$=$\frac{7}{25}$,
解得,AD=$\frac{225}{14}$,
∴DE=AD-AM=$\frac{81}{7}$,
故答案为:$\frac{81}{7}$.
点评 本题考查圆的综合问题,涉及等量代换,勾股定理,相似三角形的判定与性质,锐角三角函数等知识,知识点较综合,需要学生灵活运用所学知识解决问题.