题目内容

9.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为45°,求二楼的层高BC.

分析 延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.

解答 解:如图2,延长CB交PQ于点D.
∵MN∥PQ,BC⊥MN,
∴BC⊥PQ.
∵自动扶梯AB的坡度为1:2.4,
∴$\frac{BD}{AD}$=$\frac{1}{2.4}=\frac{5}{12}$.
设BD=5k米,AD=12k米,则AB=13k米.
∵AB=13米,
∴k=1,
∴BD=5米,AD=12米.
在Rt△CDA中,∠CDA=90゜,∠CAD=45°,
∴CD=AD=12,
∴BC=12-5=7.

点评 本题考查了解直角三角形的应用,用到的知识点是特殊角的三角函数值、仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网