题目内容
10.下列计算正确的是( )| A. | $\sqrt{3}$×$\sqrt{2}$=2$\sqrt{3}$ | B. | $\sqrt{6}$÷$\sqrt{2}$=$\sqrt{3}$ | C. | $\sqrt{6}$+$\sqrt{2}$=$\sqrt{8}$ | D. | $\sqrt{6}$-$\sqrt{2}$=$\sqrt{4}$ |
分析 直接利用二次根式的乘法运算法则化简进而求出答案.
解答 解:A、$\sqrt{3}$×$\sqrt{2}$=$\sqrt{6}$,故此选项错误;
B、$\sqrt{6}$÷$\sqrt{2}$=$\sqrt{3}$,正确;
C、$\sqrt{6}$+$\sqrt{2}$,无法计算,故此选项错误;
D、$\sqrt{6}$-$\sqrt{2}$,无法计算,故此选项错误;
故选:B.
点评 此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
练习册系列答案
相关题目
20.
把一张宽度相等的纸条按如图所示的方式折叠,图中∠1的度数为( )
| A. | 40° | B. | 50° | C. | 55° | D. | 80° |
5.学习了二次根式后,老师对学生作业中,“化简:$\sqrt{(x-3)^{2}}$$-(\sqrt{2-x})^{2}$“一题进行分析讲评,选择了下面四个同学的解答,你认为解答正确的是( )
| A. | 原式=(x-3)-(2-x)=2x-1 | B. | 原式=(3-x)-(x-2)=5-2x | ||
| C. | 原式=(3-x)-(2-x)=1 | D. | 原式=(x-3)-(x-2)=-1 |
15.下列算式中错误的是( )
| A. | $\sqrt{2}×\sqrt{3}=\sqrt{6}$ | B. | $\sqrt{2}+\sqrt{3}=\sqrt{5}$ | C. | $\sqrt{8}$$÷\sqrt{2}=2$ | D. | ($-\sqrt{3}$)2=3 |
2.用反证法证明“a≤b“时,应假设( )
| A. | a>b | B. | a<b | C. | a=b | D. | a≥b |