题目内容
19.| A. | (2017,0) | B. | (2017,$\sqrt{3}$) | C. | (2017,-$\sqrt{3}$) | D. | (2016,0) |
分析 设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(4n+1,$\sqrt{3}$),P4n+2(4n+2,0),P4n+3(4n+3,-$\sqrt{3}$),P4n+4(4n+4,0)”,依此规律即可得出结论.
解答 解:设第n秒运动到Pn(n为自然数)点,
观察,发现规律:P1(1,$\sqrt{3}$),P2(2,0),P3(3,-$\sqrt{3}$),P4(4,0),P5(5,$\sqrt{3}$),…,
∴P4n+1(4n+1,$\sqrt{3}$),P4n+2(4n+2,0),P4n+3(4n+3,-$\sqrt{3}$),P4n+4(4n+4,0).
∵2017=4×504+1,
∴P2017为(2017,$\sqrt{3}$).
故选B.
点评 本题考查了规律型中的点的坐标,解题的关键是找出变化规律“P4n+1(4n+1,$\sqrt{3}$),P4n+2(4n+2,0),P4n+3(4n+3,-$\sqrt{3}$),P4n+4(4n+4,0)”.本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.
练习册系列答案
相关题目
10.
如图,在平面直角坐标系中,∠AOB=30°,点A的坐标为(2,0),过点A作AA1⊥OB,垂足为点A1,过A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2017的横坐标为( )
| A. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2015 | B. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2016 | C. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2017 | D. | $\frac{3}{2}$•($\frac{\sqrt{3}}{2}$)2018 |
11.
如图,双曲线y=$\frac{6}{x}$(x>0)经过线段AB的中点M,则△AOB的面积为( )
| A. | 18 | B. | 24 | C. | 6 | D. | 12 |