题目内容
17.(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
分析 (1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;
(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.
解答 (1)证明:∵AE为∠ADB的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=AB.
∴∠DAE=∠E.
∴∠BAE=∠E.
∴AB=BE.
∴CD=BE.
(2)解:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠BAF=∠DFA.
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC的中点,AB=4,
∴DF=CF=DA=2.
∵DG⊥AE,DG=1,
∴AG=GF.
∴AG=$\sqrt{3}$.
∴AF=2AG=2$\sqrt{3}$.
在△ADF和△ECF中,$\left\{\begin{array}{l}{∠DAF=∠E}&{\;}\\{∠ADF=∠ECF}&{\;}\\{DF=CF}&{\;}\end{array}\right.$,
∴△ADF≌△ECF(AAS).
∴AF=EF,
∴AE=2AF=4$\sqrt{3}$.
点评 此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题(2)的关键.
练习册系列答案
相关题目
12.
在?ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是( )
| A. | AF=CE | B. | AE=CF | C. | ∠BAE=∠FCD | D. | ∠BEA=∠FCE |
2.
如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数y=$\frac{k}{x}$的图象上.那么k的值是( )
| A. | 3 | B. | 6 | C. | 12 | D. | $\frac{15}{4}$ |