题目内容

12.在?ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是(  )
A.AF=CEB.AE=CFC.∠BAE=∠FCDD.∠BEA=∠FCE

分析 根据平行四边形的性质和判定即可解决问题.

解答 解:A、错误.∵四边形ABCD是平行四边形,
∴AF∥EC,
∵AF=EC,
∴四边形AECF是平行四边形.
∴选项A错误.
B、正确.根据AE=CF,所以四边形AECF可能是平行四边形,有可能是等腰梯形,故选项B正确.
C、错误.由∠BAE=∠FCD,∠B=∠D,AB=CD可以推出△ABE≌△CDF,
∴BE=DF,
∵AD=BC,
∴AF=EC,∵AF∥EC,
∴四边形AECF是平行四边形.
故选项C错误.
D、错误.∵∠BEA=∠FCE,
∴AE∥CF,∵AF∥EC,
∴四边形AECF是平行四边形.
故选项D错误.
故选B.

点评 此题考查了平行四边形的性质与判定.解题的关键是选择适宜的证明方法,需要熟练掌握平行四边形的判定方法,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网