题目内容

16.(1)如图,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;
(2)如图,在(1)的条件下,AB的下方两点E,F满足:BF平分∠ABE,DF平分∠CDE,若∠DFB=20°,∠CDE=70°,求∠ABE的度数
(3)在前面的条件下,若P是BE上一点;G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.

分析 (1)根据内错角相等,两直线平行证明即可;
(2)先由角平分线的定义可得:$∠CDF=\frac{1}{2}∠CDE$=35°,∠ABE=2∠ABF,然后根据两直线平行内错角相等,可得:∠2=∠CDF=35°,然后利用三角形外角的性质求出∠ABF的度数,进而可求∠ABE的度数;
(3)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠BPG+∠B,再根据平行线的性质以及角平分线的定义表示出∠MGP、∠DPQ,根据两直线平行,内错角相等可得∠NGP=∠GPQ,然后列式表示出∠MGN=$\frac{1}{2}$∠B,从而判定②正确.

解答 (1)答:AB∥CD.
证明:∵AC平分∠DAB,
∴∠1=∠CAB,
∵∠1=∠2,
∴∠2=∠CAB,
∴AB∥CD;
(2)解:如图2,

∵BF平分∠ABE,DF平分∠CDE,
∴$∠CDF=\frac{1}{2}∠CDE$=35°,∠ABE=2∠ABF,
∵CD∥AB,
∴∠2=∠CDF=35°,
∵∠2=∠DFB+∠ABF,∠DFB=20°,
∴∠ABF=15°,
∴∠ABE=2∠ABF=30°;
(3)解:如图3,根据三角形的外角性质,∠1=∠BPG+∠B,
∵PQ平分∠BPG,GM平分∠DGP,
∴∠GPQ=$\frac{1}{2}$∠BPG,∠MGP=$\frac{1}{2}$∠DGP,
∵AB∥CD,
∴∠1=∠DGP,
∴∠MGP=$\frac{1}{2}$(∠BPG+∠B),
∵PQ∥GN,
∴∠NGP=∠GPQ=$\frac{1}{2}$∠BPG,
∴∠MGN=∠MGP-∠NGP=$\frac{1}{2}$(∠BPG+∠B)-$\frac{1}{2}$∠BPG=$\frac{1}{2}$∠B,
根据前面的条件,∠B=30°,
∴∠MGN=$\frac{1}{2}$×30°=15°,
∴①∠DGP-∠MGN的值随∠DGP的变化而变化;②∠MGN的度数为15°不变.

点评 本题考查了平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,综合性较强,难度较大,仔细分析图形,理清各角度之间的关系是解题的关键,也是本题的难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网