题目内容
8.结论:∠A与∠3相等,
理由如下:
∵DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°(垂直的定义)
∴DE∥AB(同位角相等,两直线平行)
∴∠1=∠A(两直线平行,同位角相等)
由DE∥BC还可得到:
∠2=∠3(两直线平行,内错角相等)
又∵∠l=∠2(已知)
∴∠A=∠3(等量代换).
分析 先根据垂直定义得到∠DEC=∠ABC=90°,则利用平行线的判定可得DE∥AB,然后根据平行线得性质得到∠2=∠3,∠1=∠A,再利用等量代换可得∠A=∠3.
解答 解:理由如下:
∵DE⊥BC,AB⊥BC(已知)
∴∠DEC=∠ABC=90°(垂直的定义),
∴DE∥AB(同位角相等,两直线平行),
∴∠1=∠A (两直线平行,同位角相等),
由DE∥BC还可得到:
∠2=∠3 (两直线平行,内错角相等),
又∵∠l=∠2(已知)
∴∠A=∠3 (等量代换).
故答案为垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.
点评 本题考查了平行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
练习册系列答案
相关题目
19.已知二次函数y=a(x2-4x-5),a≠0,下列说法:
①图象始终与x轴有两个交点;
②图象的对称轴是直线x=2;
③图象在x轴上截得的线段长为6;
④若a<0,则当-1<x<5时,y>0;
其中,正确的个数为( )
①图象始终与x轴有两个交点;
②图象的对称轴是直线x=2;
③图象在x轴上截得的线段长为6;
④若a<0,则当-1<x<5时,y>0;
其中,正确的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
18.把a$\sqrt{-\frac{1}{a}}$根号外的因式移到根号内,化简的结果是( )
| A. | $\sqrt{a}$ | B. | $\sqrt{-a}$ | C. | -$\sqrt{a}$ | D. | -$\sqrt{-a}$ |