题目内容

如图,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.

50° 【解析】试题分析:已知AB∥CD,联系平行线的性质不难得到∠EHD的大小,那么∠FHD的大小也就出来了;观察图形,利用角平分线的性质,即可得到∠DHP的大小. 【解析】 ∵AB∥CD, ∴∠CHF=∠AGH=80°, ∴∠DHF=180°-80°=100°. 又∵HP平分∠DHF, ∴∠DHP=∠DHF=50°.
练习册系列答案
相关题目

如图所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.

55° 【解析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可. 【解析】 ∵∠BAC=∠DAE, ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC, ∴∠1=∠EAC, 在△BAD和△EAC中, AB=AC,∠BAD=∠EAC, ∴△BAD≌△EAC(SAS), ∴∠2=∠ABD=30°, ∵...

如图,将以A为直角顶点的等腰Rt△ABC沿直线BC平移得到△A′B′C′,使点B′与C重合,连接A′B,则sin∠A′BC′的值为_____,cos∠A′BC=________.

【解析】过A′作出A′D⊥BC′,垂足为D, 在等腰直角三角形A′B′C′中,则A′D是底边上的中线, ∴B′C′=2 A′D, ∵BC=B′C′,BD=BC+B′D, ∴A′B= , ∴ sin∠A′BC′=,cos∠A′BC=, 故答案为: , .

如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=____________.

【解析】试题分析:在Rt△ABC中,先求出AB,AC继而得出AD,再由△ADE∽△ACB,利用对应边成比例可求出DE. 试题解析:∵BC=6,sinA=, ∴AB=10, ∴AC=, ∵D是AB的中点, ∴AD=AB=5, ∵△ADE∽△ACB, ∴,即, 解得:DE=. 考点: 1.解直角三角形;2.线段垂直平分线的性质;3勾股定理. ...

如图,将∠AOB放置在5×5的正方形网格中,则sin∠AOB的值是( )

A. B. C. D.

D. 【解析】 试题分析:在直角△OAC中,OC=2,AC=3,则OA===,则sin∠AOB===.故选D.

如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )

A. ∠A+∠E+∠D=180° B. ∠A-∠E+∠D=180°

C. ∠A+∠E-∠D=180° D. ∠A+∠E+∠D=270°

C 【解析】过点E作EF∥CD, ∵AB∥CD, ∴AB∥EF∥CD, ∴∠AEF=180°-∠A,∠DEF=∠D, ∴∠AED=∠AEF+∠DEF=180°-∠A+∠D; 即∠AED+∠A-∠D =180°. 故选C.

如图,(1)∵∠A=_____(已知),

∴AC∥ED( )

(2)∵∠2=_____(已知),

∴AC∥ED( )

(3)∵∠A+_____=180°(已知),

∴AB∥FD( )

(4)∵AB∥_____(已知),

∴∠2+∠AED=180°( )

(5)∵AC∥_____(已知),

∴∠C=∠1( )

(1)∠BED 同位角相等,两直线平行? (2)∠DFC 内错角相等,两直线平行? (3)∠AFD 同旁内角互补,两直线平行? (4)DF 两直线平行,同旁内角互补? (5)ED 两直线平行,同位角相等 【解析】(1)∠BED ,同位角相等,两直线平行? (2)∠DFC ,内错角相等,两直线平行? (3)∠AFD ,同旁内角互补,两直线平行? (4)...

如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .

5cm. 【解析】 试题分析: ∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF, ∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.

如图(1)、图(2)都是轴对称图形,图(1)有  条对称轴,图(2)有  条对称轴

2,2 【解析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.依此对连心园、长方形图形进行判断

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网