题目内容

如图(1)、图(2)都是轴对称图形,图(1)有  条对称轴,图(2)有  条对称轴

2,2 【解析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.依此对连心园、长方形图形进行判断
练习册系列答案
相关题目

如图,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.

50° 【解析】试题分析:已知AB∥CD,联系平行线的性质不难得到∠EHD的大小,那么∠FHD的大小也就出来了;观察图形,利用角平分线的性质,即可得到∠DHP的大小. 【解析】 ∵AB∥CD, ∴∠CHF=∠AGH=80°, ∴∠DHF=180°-80°=100°. 又∵HP平分∠DHF, ∴∠DHP=∠DHF=50°.

先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:

(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.

(1)根据图②写出一个等式:        

(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.

(1)(2a+b)(a+2b)=2a2+5ab+2b2(2)图形见解析 【解析】试题分析:(1)根据所给的长方形面积的两种表示法即可得等式;(2)画一个长为x+p,宽为x+q的长方形即可. 试题解析: (1)(2a+b)(a+2b)=2a2+5ab+2b2 (2)如图.(所画图形不唯一)

若3x=4,9y=7,则3x-2y的值为(  )

A. B. C.-3 D.

A 【解析】 由3x=4,9y=7与3x-2y=3x÷32y=3x÷(32)y,代入即可求得答案.

如图,∠XOY内有一点P,试在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.

见解析 【解析】【解析】 如图所示,分别以直线OX、OY为对称轴,作点P的对称点与, 连接,分别交OX于点M,交OY于点N,则PM+MN+NP最短.

等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是(  )

A. 9cm B. 12cm C. 9cm和12cm D. 在9cm与12cm之间

B 【解析】【解析】 三角形的周长等于三条边长的和.因为是等腰三角形,因此有两条边相等.所以,三边长可能是:2cm、 2cm、5cm,或者2cm、 5cm、5cm;因为三角形的任意两边之和大于第三边,故2cm、 2cm、5cm不合实际,舍去.所以周长为12cm.故B.

对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称。其中真命题的个数为

A、0    B、1    C、2    D、3

C 【解析】 试题分析:根据平面图形的基本概念依次分析各小题即可作出判断. (1)关于某一直线成轴对称的两个三角形全等,(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点,均为真命题; (2)等腰三角形的对称轴是顶角的平分线所在的直线,(4)如果两个三角形全等,它们可能是平移或旋转构成的,均为假命题; 故选C.

两条直线相交,所成的四个角中,一定有一个是锐角。 (___)

× 【解析】试题分析:当两条直线互相垂直时,所形成的四个角都是直角,故本题答案为“×”.

如果点A(-3,2m+1)关于原点对称的点在第四象限,求m的取值范围.

m>- 【解析】试题分析:由于第四象限关于原点对称的点在第二象限,反之第二象限的点关于原点对称的点在第四象限,所以A(-3,2m+1)应在第二象限,由第二象限的符号特征解之. ∵A(-3,2m+1)关于原点对称的点在第四象限. ∴A(-3,2m+1)在第二象限. ∴A点的纵坐标2m+1>0. ∴m>-.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网