题目内容

如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .

5cm. 【解析】 试题分析: ∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF, ∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.
练习册系列答案
相关题目

在两个直角三角形中,若有一对角(非直角)相等,一对边相等,则两个直角三角形( )

A. 一定全等 B. 一定不全等 C. 不一定全等 D. 以上都不是

C 【解析】如果有一对角(非直角)对应相等,一对边对应相等,题中还隐含着一对直角相等,则这两个三角形一定全等, 若不是对应相等,则不一定全等, 故选C.

如图,AB∥CD,HP平分∠DHF,若∠AGH=80°,求∠DHP的度数.

50° 【解析】试题分析:已知AB∥CD,联系平行线的性质不难得到∠EHD的大小,那么∠FHD的大小也就出来了;观察图形,利用角平分线的性质,即可得到∠DHP的大小. 【解析】 ∵AB∥CD, ∴∠CHF=∠AGH=80°, ∴∠DHF=180°-80°=100°. 又∵HP平分∠DHF, ∴∠DHP=∠DHF=50°.

如图,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.

四 【解析】∵∠AOB与∠COD是对顶角,∠AOD与∠BOC是对顶角, ∴∠AOB=∠COD,∠AOD=∠BOC. ∵AD∥BC, ∴∠CAD=∠ACB,∠ADB=∠CBD. ∴图中相等的角有四对.

如图,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____.

30° 【解析】因为∠BOD=45°,所以∠AOC=∠BOD=45°(对顶角相等),因为OE⊥AB,∴∠AOE=90°,所以∠COE=∠COA+∠AOE=45°+90°=135°.

下列语句中,正确的个数有(  )

①两个关于某直线对称的图形是全等的

②两个图形关于某直线对称,对称点一定在该直线的两旁

③两个成轴对称的图形的对应点连线的垂直平分线,就是它们的对称轴

④平面内两个全等的图形一定关于某直线对称.

A. 1个 B. 2个 C. 3个 D. 4个

B 【解析】【解析】 ①两个关于某直线对称的图形是全等的,此选项正确; ②两个图形关于某直线对称,对称点一定在该直线的两旁也有可能在直线上,此选项错误; ③两个成轴对称的图形的对应点连线的垂直平分线,就是它们的对称轴,此选项正确; ④平面内两个全等的图形不一定关于某直线对称,故此选项错误. 故选B.

先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:

(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.

(1)根据图②写出一个等式:        

(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.

(1)(2a+b)(a+2b)=2a2+5ab+2b2(2)图形见解析 【解析】试题分析:(1)根据所给的长方形面积的两种表示法即可得等式;(2)画一个长为x+p,宽为x+q的长方形即可. 试题解析: (1)(2a+b)(a+2b)=2a2+5ab+2b2 (2)如图.(所画图形不唯一)

若3x=4,9y=7,则3x-2y的值为(  )

A. B. C.-3 D.

A 【解析】 由3x=4,9y=7与3x-2y=3x÷32y=3x÷(32)y,代入即可求得答案.

两条直线相交,所成的四个角中,一定有一个是锐角。 (___)

× 【解析】试题分析:当两条直线互相垂直时,所形成的四个角都是直角,故本题答案为“×”.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网