题目内容

18.如图,在△ABC中,分别以点A和点B为圆心,大于$\frac{1}{2}$AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为(  )
A.20B.22C.14D.16

分析 由在△ABC中,分别以点A和点B为圆心,大于$\frac{1}{2}$AB的长为半径画弧,两弧相交于点M、N,作直线MN,可得MN是AB的垂直平分线,根据线段垂直平分线的性质,由△ADC的周长为8,即可得AC+BC=8,继而求得答案.

解答 解:根据题意得:MN是AB的垂直平分线,
∴AD=BD,
∵△ADC的周长为8,
∴AC+CD+AD=AC+CD+BD=AC+BC=8,
∵AB=6,
∴△ABC的周长为:AC+BC+AB=14.
故选C.

点评 此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网