题目内容
3.| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
分析 根据网格特点和勾股定理分别求出AC、AB,根据余弦的定义计算即可.
解答 解:
根据网格特点可知,AC=4,BC=3,
由勾股定理得,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
则cosα=$\frac{AC}{AB}$=$\frac{4}{5}$,
故选:D.
点评 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
练习册系列答案
相关题目
13.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数$\overline{x}$与方差s2:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲.
| 甲 | 乙 | 丙 | 丁 | |
| 平均数$\overline{x}$(cm) | 561 | 560 | 561 | 560 |
| 方差s2(cm2) | 3.5 | 3.5 | 15.5 | 16.5 |
14.某风景区门票价格如下表所示,宝应青年旅行社组织了甲、乙两个旅游团队,计划在春节期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人.
(1)用含x的代数式表示出两团队门票款之和;
①当70≤x≤100时,两团队门票款之和为9600-10x;
②当x>100时,两团队门票款之和为9600-20x;
(2)如果甲团队人数不超过100人,那么甲、乙两团队联合购票比分别购票最多可节约多少钱?
(3)春节之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团对春节之后去游玩,最多可节约3400元,求a的值.
| 人数 | 不超过50人 | 超过50人但不超过100人 | 超过100人 |
| 票价的价格 | 80元/人 | 70元/人 | 60元/人 |
①当70≤x≤100时,两团队门票款之和为9600-10x;
②当x>100时,两团队门票款之和为9600-20x;
(2)如果甲团队人数不超过100人,那么甲、乙两团队联合购票比分别购票最多可节约多少钱?
(3)春节之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团对春节之后去游玩,最多可节约3400元,求a的值.
11.下列属于最简二次根式的是( )
| A. | $\sqrt{21}$ | B. | $\sqrt{0.1}$ | C. | $\sqrt{8}$ | D. | $\sqrt{\frac{1}{3}}$ |
8.下列式子中,属于最简二次根式的是( )
| A. | $\sqrt{24}$ | B. | $\sqrt{\frac{2}{3}}$ | C. | $\sqrt{0.3}$ | D. | $\sqrt{11}$ |