题目内容

7.对于平面直角坐标系中任意两点M(x1,y1),N(x2,y2),称|x1-x2|+|y1-y2|为M,N两点的直角距离,记作:d(M,N).如:M(2,-3),N(1,4),则d(M,N)=|2-1|+|-3-4|=8.若P(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P,Q)的最小值为P到直线y=kx+b的直角距离.则P(0,-3)到直线x=1的直角距离为(  )
A.4B.3C.2D.1

分析 先找出P(0,-3)到直线x=1最近的点的坐标,再根据直角距离公式即可得出结论.

解答 解:∵垂线段最短,
∴P(0,-3)到直线x=1最近的点的坐标为(1,-3),
∴|0-1|+|-3+3|=1.
故选D.

点评 本题考查的是一次函数图象上上点的坐标特点,正确理解直角距离的定义是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网