题目内容

8.如图,要使△ACD∽△ABC,需要补充的一个条件是(  )
A.$\frac{AC}{CD}$=$\frac{BA}{BC}$B.$\frac{CD}{AD}$=$\frac{BC}{AC}$C.CD2=AD•DBD.AC2=AD•AB

分析 由于两三角形有公共角,若根据有两组角对应相等的两个三角形相似添加条件,则∠ACD=∠B;若根据两组对应边的比相等且夹角对应相等的两个三角形相似添加条件,则$\frac{AC}{AB}$=$\frac{AD}{AC}$,然后对各选项进行判断.

解答 解:∵∠CAD=∠BAC,
∴当∠ACD=∠B时,△ACD∽△ABC;
当$\frac{AC}{AB}$=$\frac{AD}{AC}$,即AC2=AD•AB时,△ACD∽△ABC.
故选D.

点评 本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网