ÌâÄ¿ÄÚÈÝ
4£®¸ù¾ÝÉÏÊö¶¨Ò壬̽¾¿ÏÂÁÐÎÊÌ⣺
£¨1£©ÒÑÖªµãA£¨x£¬y£©£¬A¡ä£¨x-3£¬y£©£¬ÔòÏß¶ÎAA¡äµÄ³¤¶ÈÊÇ3£»
£¨2£©ÒÑÖªµãA£¨x£¬y£©£¬A¡ä£¨x+2£¬y-1£©£¬ÔòÏß¶ÎAA¡äµÄ³¤¶ÈÊÇ$\sqrt{5}$£»
£¨3£©¾ØÐÎAOCBÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÈçͼËùʾ£¬A£¨0£¬2£©£¬C£¨4£¬0£©£¬µãA¡ä£¨x¡ä£¬y¡ä£©£¬Èôx¡ä=x+m£¬y¡ä=y-2m£¨m£¬n¾ùΪÕýÊý£©£¬ÇÒµãA¡ä£¨x¡ä£¬y¡ä£©ÔÚ¡÷OCBÖУ¨°üÀ¨Èý½ÇÐεıߣ©£¬ÇómµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÓɵãA£¨x£¬y£©£¬A¡ä£¨x-3£¬y£©£¬ÔòµãAÏò×óÆ½ÒÆ3¸öµ¥Î»µÃµ½µãA¡ä£¬ËùÒÔÏß¶ÎAA¡äµÄ³¤¶ÈÊÇ3£»
£¨2£©ÓɵãA£¨x£¬y£©£¬A¡ä£¨x+2£¬y-1£©£¬ÔòµãAÏòÓÒÆ½ÒÆ2¸öµ¥Î»£¬ÔÙÏòÏÂÆ½ÒÆ1¸öµ¥Î»µÃµ½µãA¡ä£¬¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÇó³öÏß¶ÎAA¡äµÄ³¤¶È£»
£¨3£©ÓÉtan¡ÏBOC=$\frac{BC}{OC}$=$\frac{2}{4}$=$\frac{1}{2}$¿ÉÖª£¬Èç¹ûµãA¡ä£¨x¡ä£¬y¡ä£©ÔÚ¡÷OCBÖУ¨°üÀ¨Èý½ÇÐεıߣ©£¬ÄÇôy¡ä¡Ü$\frac{1}{2}$x¡ä£¬¼´2-2m¡Ü$\frac{1}{2}$m£¬½âµÃm¡Ý$\frac{4}{5}$£¬ÔÙ¸ù¾Ý0¡Ü
x¡ä¡Ü4¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÒÑÖªµãA£¨x£¬y£©£¬A¡ä£¨x-3£¬y£©£¬ÔòÏß¶ÎAA¡äµÄ³¤¶ÈÊÇ3£»
£¨2£©ÒÑÖªµãA£¨x£¬y£©£¬A¡ä£¨x+2£¬y-1£©£¬ÔòÏß¶ÎAA¡äµÄ³¤¶ÈÊÇ$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$£»
£¨3£©¡ßA£¨0£¬2£©£¬µãA¡ä£¨x¡ä£¬y¡ä£©£¬
¡àx¡ä=x+m=m£¬y¡ä=y-2m=2-2m£®
¡ßtan¡ÏBOC=$\frac{BC}{OC}$=$\frac{2}{4}$=$\frac{1}{2}$£¬
¡àµ±µãA¡ä£¨x¡ä£¬y¡ä£©ÔÚ¡÷OCBÖУ¨°üÀ¨Èý½ÇÐεıߣ©Ê±£¬y¡ä¡Ü$\frac{1}{2}$x¡ä£¬
¼´2-2m¡Ü$\frac{1}{2}$m£¬
½âµÃm¡Ý$\frac{4}{5}$£¬
ÓÖ0¡Üm¡Ü4£¬
¡à$\frac{4}{5}$¡Üm¡Ü4£®
¹Ê´ð°¸Îª3£»$\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁË×ø±êÓëͼÐα仯-Æ½ÒÆ£¬ÕÆÎÕÆ½ÒÆÖеãµÄ±ä»¯¹æÂÉ£ººá×ø±êÓÒÒÆ¼Ó£¬×óÒÆ¼õ£»×Ý×ø±êÉÏÒÆ¼Ó£¬ÏÂÒÆ¼õÊǽâÌâµÄ¹Ø¼ü£®Í¬Ê±¿¼²éÁ˹´¹É¶¨Àí£¬Ò»ÔªÒ»´Î²»µÈʽ×éµÄ½â·¨£®
| A£® | ѧ | B£® | ϰ | C£® | ÎÒ | D£® | ¿ì |
| A£® | 1 | B£® | 2 | C£® | 4 | D£® | 6 |
| A£® | £¨x-4£©2=19 | B£® | £¨x-2£©2=7 | C£® | £¨x+2£©2=7 | D£® | £¨x+4£©2=19 |
| A£® | $\sqrt{a+5}$ | B£® | $\sqrt{\frac{a}{3}}$ | C£® | $\sqrt{8}$ | D£® | $\sqrt{5{a^2}}$ |
| A£® | ²»±ä | B£® | À©´óΪÔÀ´µÄ2±¶ | C£® | À©´óΪÔÀ´µÄ4±¶ | D£® | ËõСΪÔÀ´µÄ$\frac{1}{2}$ |