如图所示,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM≌△CFN;

(2)求证:BD与MN互相平分.

(1)证明见解析(2)证明见解析 【解析】试题分析:(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明; (2)根据平行四边形的性质及(1)的结论可得BM 平行且等于DN,则由有一组对边平行且相等的四边形是平行四边形可得四边形BMDN是平行四边形,再由平行四边形的性质即可证明结论....

下面是分式方程的是( )

A. B.

C. D.

D 【解析】A、不是方程,故本选项错误; B、分母中不含有未知数,是整式方程,故本选项错误; C、分母中不含有未知数,是整式方程,故本选项错误; D、分母中含有未知数,是分式方程,故本选项正确. 故选D.

,则的值为( )

A. B. C. 2 D. 4

B 【解析】++ =-+ = = =. ∵=, ∴设a=5k,b=3k, ∴原式==. 故选B.

化简: =___.

-1 【解析】试题解析:原式 故答案为:

如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.

证明见解析. 【解析】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D. 试题解析:∵AB=AC=AD, ∴∠C=∠ABC,∠D=∠ABD. ∴∠ABC=∠CBD+∠D. ∵AD∥BC, ∴∠CBD=∠...

等腰三角形的对称轴是______.

顶角平分线所在直线 【解析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,如图所示:等腰三角形的对称轴是顶角平分线所在直线. 故答案是:顶角平分线所在直线.

已知:如图△ABC中,AB=AC,CD、BE是△ABC的角平分线.求证:AD=AE.

证明见解析. 【解析】试题分析:先根据CD、BE是△ABC的角平分线和等腰三角形的性质得到,∠1=∠2,∠A=∠A,结合AB=AC,可证△ADC≌△AEB,所以AD=AE. 试题解析:∵AB=AC(已知), ∴∠ABC=∠ACB. ∵CD、BE是△ABC的角平分线(已知), ∴∠1=∠ABC,∠2=∠ACB, ∴∠1=∠2. 又∵∠A=∠A(已知), ...

(3a-4b)2等于_______;

9a2-24ab+16b2 【解析】根据完全平方公式可得:(3a-4b)2=9a2-24ab+16b2.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网