题目内容
2.(1)求∠CAE的度数;
(2)求这棵大树折断前的高度?
(结果精确到个位,参考数据:$\sqrt{2}$=1.4,$\sqrt{3}$=1.7,$\sqrt{6}$=2.4).
分析 (1)延长BA交EF于点G.根据三角形内角和定理求出∠CAE的度数;
(2)过点A作AE⊥CD,根据余弦和正弦的概念分别求出DH和AH的长,根据等腰直角三角形的性质计算即可.
解答 解:(1)延长BA交EF于点G.
在Rt△AGE中,∠E=23°,
∴∠GAE=67°,
又∵∠BAC=38°,
∴∠CAE=180°-67°-38°=75°.
(2)过点A作AE⊥CD,垂足为H.
在△ADH中,∠ADC=60°,AD=8,![]()
cos∠ADC=$\frac{DH}{AD}$,
∴DH=4,
sin∠ADC=$\frac{AH}{AD}$,
∴$AH=4\sqrt{3}$.
在Rt△ACH中,∠C=180°-75°-60°=45°,
∴$CH=AH=4\sqrt{3}$,$AC=4\sqrt{6}$.
∴$AB=AC+CD=4\sqrt{6}+4\sqrt{3}+4≈20$(米).
答:这棵大树折断前高约20米.
点评 本题考查的是解直角三角形的应用-坡度坡角问题,正确标注坡角、倾斜角、灵活运用锐角三角函数的概念是解题的关键,注意特殊角的三角函数值的应用.
练习册系列答案
相关题目
12.一汽车租赁公司拥有某种型号的汽车50辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接判断每月租出的车辆数y(辆)与每辆车的月租金x(元)之间满足三类函数关系中的哪类函数关系,并求出y与x之间的关系式(写出自变量x的取值范围).
(2)已知租出的车每辆每月需要维护费200元,未租出的车每辆每月需要维护费40元.则每月租出的车共需要维护费200(-$\frac{1}{40}$x+300)元(用含x的代数式表示,不必化简),每月未租出的车共需要维护费40[50-(-$\frac{1}{40}$x+300)]元(用含x的代数式表示,不必化简).现设该租赁公司每月扣除所有车辆的维护费后获得的月收益为W元,若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得的月收益W最大?并求出公司的最大月收益是多少元.
| x | … | 10800 | 11000 | 11200 | 11400 | … |
| y | … | 30 | 25 | 20 | 15 | … |
(2)已知租出的车每辆每月需要维护费200元,未租出的车每辆每月需要维护费40元.则每月租出的车共需要维护费200(-$\frac{1}{40}$x+300)元(用含x的代数式表示,不必化简),每月未租出的车共需要维护费40[50-(-$\frac{1}{40}$x+300)]元(用含x的代数式表示,不必化简).现设该租赁公司每月扣除所有车辆的维护费后获得的月收益为W元,若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得的月收益W最大?并求出公司的最大月收益是多少元.
10.小林在某商店购买商品A,B共三次,第一、两次均按标价购物,第三次购物时,商品A,B同时打6折,三次购物商品A,B的数量和费用如下表:
(1)求出商品A,B的标价;
(2)求第三次购物时的总费用是多少?
| 购买商品A的数量(个) | 购买商品B的数量(个) | 购买总费用(元) | |
| 第一次购物 | 6 | 5 | 1140 |
| 第二次购物 | 3 | 7 | 1110 |
| 第三次购物 | 9 | 8 |
(2)求第三次购物时的总费用是多少?