题目内容
14.下列关于正方形的叙述,正确的是( )| A. | 正方形有且只有一个内切圆 | |
| B. | 正方形有无数个外接圆 | |
| C. | 对角线相等且垂直的四边形是正方形 | |
| D. | 用一根绳子围成一个平面图形,正方形的面积最大 |
分析 利用正方形的性质、外接圆、内切圆的定义一一判断即可.
解答 解:A、正确.正方形有且只有一个内切圆;
B、错误.正方形有且只有一个外接圆;
C、错误.对角线相等且垂直的四边形不一定是正方形;
D、错误.用一根绳子围成一个平面图形,圆形的面积最大;
故选A.
点评 本题考查正多边形与圆、内切圆、外接圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
练习册系列答案
相关题目
9.
如图,AB∥CD,射线AE交CD于点F,若∠1=105°,则∠2的度数是( )
| A. | 75° | B. | 85° | C. | 95° | D. | 105° |
19.【问题提出】
我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.

【初步思考】
在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:
那么满足2个条件的四边形是不是平行四边形呢?
【深入探究】
小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:
Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;
Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;
Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.
(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.
(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.
定义:两组对边分别平行的四边形是平行四边形;
定理1:两组对边分别相等的四边形是平行四边形;
定理2:一组对边平行且相等的四边形是平行四边形;
定理3:对角线互相平分的四边形是平行四边形.
(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):
真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.
(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.
假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.
反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.
我们借助学习“图形的判定”获得的经验与方法对“平行四边形的判定”进一步探究.
【初步思考】
在一个四边形中,我们把“一组对边平行、一组对边相等、一组对角相等或一条对角线被另一条对角线平分”称为一个条件.如图1,四边形ABCD中,我们用符号语言表示出所有的8个条件:
| ①AB=CD; | ②AD=BC; | ③AB∥CD; | ④AD∥BC; |
| ⑤∠BAD=∠BCD; | ⑥∠ABC=∠ADC; | ⑦OA=OC; | ⑧OB=OD. |
【深入探究】
小莉所在学习小组进行了研究,她们认为2个条件可分为以下六种类型:
Ⅰ关于对边的2个条件;Ⅱ关于对角的2个条件;
Ⅲ关于对角线的2个条件;Ⅳ关于边的条件与角的条件各1个;
Ⅴ关于边的条件与对角线的条件各1个;Ⅵ关于角的条件与对角线的条件各1个.
(1)小明认为“Ⅰ关于对边的2个条件”可分为“①②,③④,①③,①④”共4种不同种类的情形.请你仿照小明的叙述对其它五种类型进一步分类.
(2)小红认为有4种情形是平行四边形的判定依据.请你写出其它的三个判定定理.
定义:两组对边分别平行的四边形是平行四边形;
定理1:两组对边分别相等的四边形是平行四边形;
定理2:一组对边平行且相等的四边形是平行四边形;
定理3:对角线互相平分的四边形是平行四边形.
(3)小刚认为除了4个判定依据外,还存在一些真命题,他写出了其中的1个,请证明这个真命题,并仿照他的格式写出其它真命题(无需证明):
真命题1:四边形ABCD中,若∠BAD=∠BCD,∠ABC=∠ADC,则四边形ABCD是平行四边形.
(4)小亮认为,还存在一些假命题,他写出了其中的1个,并举反例进行了说明,请你仿照小亮的格式写出其它假命题并举反例进行说明.
假命题1:四边形ABCD中,若AB=CD,AD∥BC,则四边形ABCD不一定是平行四边形.
反例说明:如图2,四边形ABCD中,AB=CD,AD∥BC,显然四边形ABCD不是平行四边形.