题目内容

5.如图,在△ABC中,AD是高,将△ABC折叠,使点A和的D重合,折痕为EF,若AB=7cm,BC=6cm,AC=5cm,则△DEF的周长是9cm.

分析 根据折叠图形的对称性,易得△EDF≌△EAF,运用中位线定理可知△AEF的周长等于△ABC周长的一半,进而△DEF的周长可求解.

解答 解:∵△EDF是△EAF折叠以后形成的图形,
∴△EDF≌△EAF,
∴∠AEF=∠DEF,
∵AD是BC边上的高,
∴EF∥CB,
又∵∠AEF=∠B,
∴∠BDE=∠DEF,
∴∠B=∠BDE,
∴BE=DE,
同理,DF=CF,
∴EF为△ABC的中位线,
∴△DEF的周长为△EAF的周长,即AE+EF+AF=$\frac{1}{2}$(AB+BC+AC)=$\frac{1}{2}$(7+6+5)=9cm.
故答案为:9cm.

点评 本题考查了中位线定理,并涉及到图形的折叠,认识到图形折叠后所形成的图形△AEF与△DEF全等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网