题目内容
14.分析 连接BD,BG,设DC和BG相较于点O,利用△BOD∽△COG求出线段BO、OC、OD、OG,在RT△BGE中利用勾股定理即可求BE.
解答 解:(1)如图1,∵四边形ABCD、四边形CGEF都是正方形,
∴BC=CD=$\sqrt{5}$,CG=CE=$\sqrt{2}$,∠BCD=∠GCE=90°,∠DEC=∠CGE=45°,∠BDC=45°,
∴BD=$\sqrt{10}$,GE=2,
∴∠BCG=∠DCE,
在△BCG和△DCE中,![]()
$\left\{\begin{array}{l}{BC=CD}\\{∠BCG=∠DCE}\\{CG=CE}\end{array}\right.$,
∴△BCG≌△DCE,
∴∠BGC=∠DEC=45°,
∴∠BGE=∠BGC+∠CGE=90°,
∵∠DOB=∠GOC,∠BDO=∠OGC,
∴△BDO∽△CGO,
∴$\frac{BD}{CG}=\frac{BO}{OC}=\frac{DO}{DG}=\frac{\sqrt{10}}{\sqrt{2}}$,
设OC=k,则BO=$\sqrt{5}$k,∵BO2=OC2+BC2,
∴5k2=5+k2,
∴k=$\frac{\sqrt{5}}{2}$,
∴OC=OD=$\frac{\sqrt{5}}{2}$,BO=2.5,OG=0.5,
∴BG=BO+OG=3,
在RT△BGE中,BG=3,EG=2,
∴BE=$\sqrt{B{G}^{2}+C{E}^{2}}$=$\sqrt{13}$,
故答案为$\sqrt{13}$.
点评 本题考查全等三角形的判定和性质、相似三角形的判定和性质、以及勾股定理的运用,正确添加辅助线,灵活运用三角形全等或相似是解题的关键..
练习册系列答案
相关题目
6.如图所示,下列图案均是由完全相同的“太阳型”图标按一定的规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图标,第3个图案需要7个图标,…,按此规律,第n个图案需要图标的个数是n+2n-1.
2.
如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是( )
| A. | x+y=7 | B. | x-y=2 | C. | x2-y2=4 | D. | 4xy+4=49 |
6.下列方程中有两个相等实数根的是( )
| A. | 2x2+4x+35=0 | B. | x2+1=2x | C. | (x-1)2=-1 | D. | 5x2+4x=1 |