ÌâÄ¿ÄÚÈÝ
12£®£¨1£©ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£®
£¨2£©Èô·ÅË®6h£¬Ë®ËþÖл¹ÓжàÉÙË®£¿
·ÖÎö £¨1£©¸ù¾ÝͼÏóµÃ³öÐÅÏ¢£¬ÔÙÀûÓôý¶¨ÏµÊý·¨½â³ö½âÎöʽ¼´¿É£»
£¨2£©°Ñx=6´úÈë½âÎöʽ½â´ð¼´¿É£®
½â´ð ½â£º£¨1£©Éè½âÎöʽΪ£ºy=kx+b£¬
°Ñ£¨0£¬4£©ºÍ£¨8£¬0£©´úÈë¿ÉµÃ£º$\left\{\begin{array}{l}{b=4}\\{8k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-0.5}\\{b=4}\end{array}\right.$£®
ËùÒÔ½âÎöʽΪ£ºy=-0.5x+4£»
£¨2£©°Ñx=6´úÈë½âÎöʽ¿ÉµÃ£ºy=-0.5¡Á6+4=1£®
´ð£ºË®ËþÖл¹ÓÐ1m3Ë®£®
µãÆÀ ´ËÌ⿼²éÒ»´Îº¯ÊýµÄÓ¦Ó㬹ؼüÊǸù¾ÝͼÏóµÃ³öÐÅÏ¢£¬ÔÙÀûÓôý¶¨ÏµÊý·¨½â³ö½âÎöʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®º¯Êýy=2xÓëy=$\frac{18}{x}$µÄͼÏó½»ÓÚA¡¢BÁ½µã£¨ÆäÖÐAÔÚµÚÒ»ÏóÏÞ£©£¬¹ýA×÷AC¡ÍxÖáÓÚC£¬Ôò¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 6 | B£® | 9 | C£® | 12 | D£® | 18 |
4£®½â·½³Ì×飺$\left\{\begin{array}{l}{\frac{x+1}{3}=\frac{5x-y}{5}}\\{7y=5x+25}\end{array}\right.$£®
13£®ÏÂÁеÈʽһ¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
| A£® | $\frac{n}{m}$=$\frac{{n}^{2}}{{m}^{2}}$ | B£® | $\frac{n}{m}$=$\frac{n-1}{m-1}$ | C£® | $\frac{n}{m}$=$\frac{n+1}{m+1}$ | D£® | $\frac{n}{m}$=$\frac{na}{ma}$£¨a¡Ù0£© |