题目内容
(1)判断△FBC的形状,并说明理由;
(2)请探索线段AB、AC与AF之间满足条件的关系式并说明理由.
考点:圆周角定理,全等三角形的判定与性质,等边三角形的判定与性质
专题:
分析:(1)运用圆周角定理、圆内接四边形的性质证明∠FCB=∠FAB=60°,即可解决问题.
(2)如图,作辅助线,首先证明△AGC为等边三角形;进而证明△ACF≌△GCB,得到AF=BG,问题即可解决.
(2)如图,作辅助线,首先证明△AGC为等边三角形;进而证明△ACF≌△GCB,得到AF=BG,问题即可解决.
解答:
解:(1)△FBC为等边三角形.理由如下:
∵∠CAM=120°,AD是∠CAM的平分线,
∴∠CAD=∠MAD=60°;
∴∠FBC=∠CAD=60°,∠FAB=∠MAD=60°;
∴∠FCB=∠FAB=60°,
∴△FBC是等边三角形.
(2)在线段AB上截取AG,使AG=AC,连接CG;
∵∠GAC=∠BFC=60°,
∴△AGC为等边三角形,AC=GC;∠ACG=60°;
∵∠BCF=60°,
∴∠ACF=∠GCB;在△ACF与△GCB中,
,
∴△ACF≌△GCB(SAS),
∴AF=BG,
∴AB=AC+AF.
∵∠CAM=120°,AD是∠CAM的平分线,
∴∠CAD=∠MAD=60°;
∴∠FBC=∠CAD=60°,∠FAB=∠MAD=60°;
∴∠FCB=∠FAB=60°,
∴△FBC是等边三角形.
(2)在线段AB上截取AG,使AG=AC,连接CG;
∵∠GAC=∠BFC=60°,
∴△AGC为等边三角形,AC=GC;∠ACG=60°;
∵∠BCF=60°,
∴∠ACF=∠GCB;在△ACF与△GCB中,
|
∴△ACF≌△GCB(SAS),
∴AF=BG,
∴AB=AC+AF.
点评:该题主要考查了圆周角定理及其推论、等边三角形的判定、全等三角形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,灵活运用有关定理来分析、判断、推理或解答.
练习册系列答案
相关题目
| A、2个 | B、3个 | C、4个 | D、5个 |