题目内容

18.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形        ②△AED≌△GED         ③∠DFG=112.5°        
  ④BC+FG=1.5,其中正确的结论是(  )
A.①②③④B.①②③C.①②D.

分析 首先证明RT△ADE≌RT△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.

解答 证明:∵四边形ABCD是正方形,
∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,
∵△DHG是由△DBC旋转得到,
∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,
在RT△ADE和RT△GDE中,
$\left\{\begin{array}{l}{DE=DE}\\{DA=DG}\end{array}\right.$,
∴RT△AED≌RT△GED,故②正确;
∴∠ADE=∠EDG=22.5°,AE=EG,
∴∠AED=∠AFE=67.5°,
∴AE=AF,
在△AEF与△GEF中,
$\left\{\begin{array}{l}{AE=EG}\\{EF=EF}\\{AF=GF}\end{array}\right.$,
△AEF≌△GEF,
∴EG=GF,
∴AE=EG=GF=FA,
∴四边形AEGF是菱形,故①正确;
∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确;
∵AE=FG=EG=BG,BE=$\sqrt{2}$AE,
∴BE>AE,
∴AE<$\frac{1}{2}$,
∴CB+FG<1.5,故④错误.
故选B.

点评 本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网