题目内容

4.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
x-101234
y1052125
若A(m,y1),B(m-2,y2)两点都在该函数的图象上,当m=3时,y1=y2

分析 根据表中的对应值可得x=1和x=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y1=y2,所以A(m,y1),B(m-2,y2)是抛物线上的对称点,则2-(m-2)=m-2,然后解方程即可.

解答 解:∵x=1时,y=2;x=3时,y=2,
∴抛物线的对称轴为直线x=2,
∵A(m,y1),B(m-2,y2)两点都在该函数的图象上,且y1=y2
∴2-(m-2)=m-2,
解得m=3.
故答案为:3

点评 本题考查了二次函数图象上点的坐标特征,抛物线y=ax2+bx+c(a≠0)关于对称轴x=-$\frac{b}{2a}$成轴对称,所以抛物线上的点关于其对称轴对称,且都满足函数关系式.

练习册系列答案
相关题目
15.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

(1)阅读填空
如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.
理由:连接AH,EH.
∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.
∵DH⊥AE∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED∴△ADH∽△HDE.
∴$\frac{AD}{DH}$=$\frac{DH}{DE}$,即DH2=AD×DE.
又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.
(2)类比思考
平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.
(3)解决问题
三角形的“化方”思路是:先把三角形转化为等积的矩形(填写图形各称),再转化为等积的正方形.
如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.
(不要求写具体作法,但要保留作图痕迹)
(4)拓展探究
n边形(n>3)的“化方”思路之一是:把n边形转化为n-1边形,…,直至转化为等积三角形,从而可以化方.
如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网