题目内容

1.如图,∠ABD和∠BDC两个角的平分线交于点E,DE的延长线交AB于F.
(1)如果∠1+∠2=90°,那么AB与CD平行吗?请说明理由;
(2)如果AB∥CD,那么∠2和∠3互余吗?请说明理由.

分析 (1)根据平行线的性质可得出∠ABD=2∠2,∠BDC=2∠1,再由∠1+∠2=90°可得出∠ABD+∠BDC=180°,依据“同旁内角互补,两直线平行”即可得出结论;
(2))根据平行线的性质可得出∠ABD=2∠2,∠BDC=2∠1,∠EBF=∠2,再由AB∥CD可得出∠ABD+∠BDC=180°,根据角的关系即可得出∠1+∠2=90°,结合直角三角形的性质及等量替换即可得出∠2+∠3=90°,此题得解.

解答 解:(1)平行,理由如下:
∵DE平分∠BDC,BE平分∠ABD,
∴∠ABD=2∠2,∠BDC=2∠1,
∵∠1+∠2=90°,
∴∠ABD+∠BDC=2×(∠1+∠2)=180°,
∴AB∥CD.
(2)互余,理由如下:
∵DE平分∠BDC,BE平分∠ABD,
∴∠ABD=2∠2,∠BDC=2∠1,∠EBF=∠2,
∵AB∥CD,
∴∠ABD+∠BDC=180°,
∴∠1+∠2=90°,
∴∠BED=90°,∠BEF=90°,
∴∠EBF+∠3=90°,
∴∠2+∠3=90°,
即∠2和∠3互余.

点评 本题考查了平行线段的判定及性质、余角和补角以及角的计算,解题的关键是:(1)找出∠ABD+∠BDC=180°;(2)找出∠2+∠3=90°.本题属于中档题,难度不大,解决该题型题目时,牢记平行线的判定及性质是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网