题目内容
2.解方程组:(1)$\left\{\begin{array}{l}2x+y=5\\ x-y=4\end{array}\right.$
(2)$\left\{{\begin{array}{l}{2x-3y=6}\\{3x-2y=4}\end{array}}\right.$.
分析 (1)、(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.
解答 解:(1)$\left\{\begin{array}{l}2x+y=5①\\ x-y=4②\end{array}\right.$,①+②得,3x=9,解得x=3,把x=3代入②得,3-y=4,解得y=-1,
故方程组的解为$\left\{\begin{array}{l}x=3\\ y=-1\end{array}\right.$;
(2)$\left\{\begin{array}{l}2x-3y=6①\\ 3x-2y=4②\end{array}\right.$,①×2-②×3得,-5x=0,解得x=0,把x=0代入①得,-3y=6,解得y=-2,
故方程组的解为$\left\{\begin{array}{l}x=0\\ y=-2\end{array}\right.$.
点评 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
练习册系列答案
相关题目
13.若a>b,则下列不等式不一定成立的是( )
| A. | a+m>b+m | B. | a(m2+1)>b(m2+1) | C. | -2a<-2b | D. | a2>b2 |
10.下列方程组中,是二元一次方程组的是( )
| A. | $\left\{\begin{array}{l}{xy=1}\\{x+2y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{3y-x=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{\frac{1}{x}+\frac{1}{y}=1}\\{x+y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+z=2}\\{x+y=3}\end{array}\right.$ |
4.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
若A(m,y1),B(m-2,y2)两点都在该函数的图象上,当m=3时,y1=y2.
| x | … | -1 | 0 | 1 | 2 | 3 | 4 | … |
| y | … | 10 | 5 | 2 | 1 | 2 | 5 | … |