题目内容
15.“五•一”假期的某天,小明、小东两人同时分别从家出发骑共享单车到奥林匹克公园,已知小明家到公园的路程为15km,小东家到公园的路程为12km,小明骑车的平均速度比小东快3.5km/h,结果两人同时到达公园.求小东从家骑车到公园的平均速度.分析 根据题意可以列出相应的分式方程,从而可以解答本题.
解答 解:设小东从家骑车到公园的平均速度为xkm/h,
$\frac{15}{x+3.5}=\frac{12}{x}$,
解得,x=14,
经检验x=14是原分式方程的解,
答:小东从家骑车到公园的平均速度14km/h.
点评 本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要检验.
练习册系列答案
相关题目
10.
下面是小东的探究学习过程,请补充完整:
(1)探究函数y=$\frac{{x}^{2}+2x-2}{2x-2}$(x<1)的图象与性质.
小东根据学习函数的经验,对函数y=$\frac{{x}^{2}+2x-2}{2x-2}$(x<1)的图象与性质进行了探究.
①如表是y与x的几组对应值.
求m的值;
②如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
③进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可):当x<0时,y随x的增大而增大;
(2)小东在(1)的基础上继续探究:他将函数y=$\frac{{x}^{2}+2x-2}{2x-2}$(x<1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数y=$\frac{{x}^{2}+2x-7}{2x-4}$(x<2)的图象,请写出函数y=$\frac{{{x^2}+2x-7}}{2x-4}$(x<2)的一条性质:函数图象的最高点坐标为(1,2).
(1)探究函数y=$\frac{{x}^{2}+2x-2}{2x-2}$(x<1)的图象与性质.
小东根据学习函数的经验,对函数y=$\frac{{x}^{2}+2x-2}{2x-2}$(x<1)的图象与性质进行了探究.
①如表是y与x的几组对应值.
| x | … | -3 | -2 | -1 | -$\frac{1}{2}$ | 0 | $\frac{1}{5}$ | $\frac{1}{2}$ | $\frac{4}{5}$ | … |
| y | … | -$\frac{1}{8}$ | $\frac{1}{3}$ | $\frac{3}{4}$ | $\frac{11}{12}$ | 1 | $\frac{39}{40}$ | m | -$\frac{3}{5}$ | … |
②如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
③进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可):当x<0时,y随x的增大而增大;
(2)小东在(1)的基础上继续探究:他将函数y=$\frac{{x}^{2}+2x-2}{2x-2}$(x<1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数y=$\frac{{x}^{2}+2x-7}{2x-4}$(x<2)的图象,请写出函数y=$\frac{{{x^2}+2x-7}}{2x-4}$(x<2)的一条性质:函数图象的最高点坐标为(1,2).