题目内容
如图(1),在△ABC中中,直线ME垂直平分AB,分别交AB、BC于点E、M,直线NF垂直平分AC,分别交AC、BC于点F、N.

(1)求证:△AMN的周长等于BC的长;
(2)结合(1)的启发,解决下列问题:如图(2),在∠AOB=60°内部有一定点P,且OP=4,试在OA、OB上确定两点M、N,使△PMN周长最短,并求出最短周长.
(1)求证:△AMN的周长等于BC的长;
(2)结合(1)的启发,解决下列问题:如图(2),在∠AOB=60°内部有一定点P,且OP=4,试在OA、OB上确定两点M、N,使△PMN周长最短,并求出最短周长.
考点:轴对称-最短路线问题,线段垂直平分线的性质
专题:
分析:(1)由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.
(2)作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰三角形,据此即可求解.
(2)作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰三角形,据此即可求解.
解答:(1)证明:∵直线MP为线段AB的垂直平分线(已知),
∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),
又∵直线NQ为线段AC的垂直平分线(已知),
∴NA=NC(线段垂直平分线上的点到线段两端点的距离相等),
∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC(等量代换),
(2)解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵PC关于OA对称,
∴∠COP=2∠AOP,OC=OP
同理,∠DOP=2∠BOP,OP=OD
∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=120°,OC=OD.
∵OP=4,
∴OC=OD=4,
∴CD=4
,
∴△PMN周长最短值为4
.
∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),
又∵直线NQ为线段AC的垂直平分线(已知),
∴NA=NC(线段垂直平分线上的点到线段两端点的距离相等),
∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC(等量代换),
(2)解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.
∵PC关于OA对称,
∴∠COP=2∠AOP,OC=OP
同理,∠DOP=2∠BOP,OP=OD
∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=120°,OC=OD.
∵OP=4,
∴OC=OD=4,
∴CD=4
| 3 |
∴△PMN周长最短值为4
| 3 |
点评:此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.
练习册系列答案
相关题目