题目内容
分解因式﹕﹙x2-1﹚﹙x4+x2+1﹚-﹙x3+1﹚2.
考点:因式分解
专题:
分析:先根据立方差公式得到原式=﹙x6-1﹚-﹙x3+1﹚2,再根据平方差公式得到原式=﹙x3+1﹚﹙x3-1﹚-﹙x3+1﹚2,提取公因式﹙x3+1﹚,根据立方和公式即可求解.
解答:解﹕﹙x2-1﹚﹙x4+x2+1﹚-﹙x3+1﹚2
=﹙x6-1﹚-﹙x3+1﹚2
=﹙x3+1﹚﹙x3-1﹚-﹙x3+1﹚2
=﹙x3+1﹚﹙x3-1-x3-1﹚
=-2(x+1)(x2-x+1).
=﹙x6-1﹚-﹙x3+1﹚2
=﹙x3+1﹚﹙x3-1﹚-﹙x3+1﹚2
=﹙x3+1﹚﹙x3-1-x3-1﹚
=-2(x+1)(x2-x+1).
点评:考查了因式分解,关键是熟练掌握立方差公式,平方差公式,提取公因式法分解因式.
练习册系列答案
相关题目