题目内容
(1)如图1,判断⊙E与AB的位置关系,并证明你的结论;
(2)如图2,当⊙E与BC切于点F时,求t的值.
考点:直线与圆的位置关系
专题:
分析:(1)首先过点D作DM⊥AC于点M,由△ABC为等边三角形,可得∠A=60°,可得AM=
t,DM=
t,继而求得AE与ME的长,则可得在△ADE中,AD2=t2,AE2=4t2,DE2=3t2,证得AD2+DE2=AE2,继而证得AB与⊙D相切;
(2)首先连接BE、EF,由切线长定理可得BE平分∠ABC,然后由等腰三角形的性质,求得AE的长,继而求得答案;
| 1 |
| 2 |
| ||
| 2 |
(2)首先连接BE、EF,由切线长定理可得BE平分∠ABC,然后由等腰三角形的性质,求得AE的长,继而求得答案;
解答:
解:(1)AB与⊙E相切.
理由如下:过点D作DM⊥AC于点M,
∵△ABC为等边三角形,
∴∠A=60°,
在Rt△ADM中,
∵AD=t,∠A=60°,
∴AM=
t,DM=
t,
∵AE=2t,
∴ME=
t,
在Rt△DME中,DE2=DM2+EM2=3t2,
在△ADE中,∵AD2=t2,AE2=4t2,DE2=3t2,
∴AD2+DE2=AE2,
∴∠ADE=90°,
∴AB与⊙E相切;
(2)连接BE、EF,
∵BD、BF与⊙O相切,
∴BE平分∠ABC,
∵AB=BC,
∴AE=CE,
∵AC=4,
∴AE=2,
∴t=1;
理由如下:过点D作DM⊥AC于点M,
∵△ABC为等边三角形,
∴∠A=60°,
在Rt△ADM中,
∵AD=t,∠A=60°,
∴AM=
| 1 |
| 2 |
| ||
| 2 |
∵AE=2t,
∴ME=
| 3 |
| 2 |
在Rt△DME中,DE2=DM2+EM2=3t2,
在△ADE中,∵AD2=t2,AE2=4t2,DE2=3t2,
∴AD2+DE2=AE2,
∴∠ADE=90°,
∴AB与⊙E相切;
(2)连接BE、EF,
∵BD、BF与⊙O相切,
∴BE平分∠ABC,
∵AB=BC,
∴AE=CE,
∵AC=4,
∴AE=2,
∴t=1;
点评:此题考查了切线的性质与判定、勾股定理以及逆定理、圆与圆的位置关系以及切线长定理.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用.
练习册系列答案
相关题目
| A、只有①② | B、①②③ |
| C、只有②③ | D、只有①③ |
| A、(6,0) |
| B、(6,3) |
| C、(6,5) |
| D、(4,2) |